martes, 1 de diciembre de 2015

4.2 Distintos tipos de cableado

Tipos de cables eléctricos según su aplicación.


En las instalaciones eléctricas existen diversas formas en la que se puede distribuir la energía eléctrica, así las condiciones en la que se debe someter los cables eléctricos. Por esta situación se han diseñado diversos tipos de cables que dependen donde vayan a ser instalados. Estas condiciones puede ser en un zona subterránea, aérea, equipos industriales o domésticos. En este post verás los tipos de cables más utilizados a nivel residencial.


Cable de distribución aérea

Cable generalmente compuesto por tres o cuatros cables, con aislamiento individual termoplástico de polietileno o de PVC. Estos están dispuestos helicoidalmente alrededor de un conductor neutro mensajero sin ningún aislante.






Fig. 1.1- Cable de distribución aérea, (imagen cortesía de conductores VIAKON) 



Aplicaciones:

  • Estos cables se usan en sistemas de distribución aérea de energía eléctrica en baja tensión.
  • Como acometida aérea de servicios secundarios.
  • Alumbrado general.





    Fig. 1.2-Cable de distribución aérea y cable concéntrico en acometida.


    Cable concéntrico

    Alambre o cable de cobre suave, con aislamiento termoplástico de policloruro de vinilo (PVC), rodeado concéntricamente por un neutro a base de alambres de cobre desnudo suave, dispuestos en forma helicoidal y cubierta termoplástica de polietileno o PVC. Se utiliza en las acometidas eléctricas monofásicas a dos o tres hilos.


    Fig. 1.3- Cable concéntrico para acometidas, (imagen cortesía de conductores VIAKON)

    Cable multiconductor

    Cable de tres o cuatro conductores de cobre suave, con aislamiento individual termoplástico de policloruro de vinilo (PVC), e identificados por el color del aislamiento, rellenos para dar sección circular, cinta reunidora y cubierta exterior termoplástica de policloruro de vinilo (PVC).



    Fig. 1.4- Cable multiconductor, (imagen cortesía de conductores NEXANS)


    Aplicaciones:

    • Equipos industriales de alimentación trifásica. Como motores de correa transportadora y pequeñas bombas.
    • Equipos comerciales. Como hornos, extractores, neveras industrial, lavadoras industrial.

    Cordón dúplex o SPT

    Cordón flexible de dos conductores paralelos (cordones de cobre suave), se fabrican en calibres desde 22 AWG hasta 10 AWG. Poseen aislamiento individual de policloruro de vinilo (PVC) y unidos por una pista del mismo material.



    Fig. 1.5- Cable dúplex o SPT, (imagen cortesía de conductores VIAKON)



    Aplicaciones:


    Están diseñados para suministrar energía eléctrica en baja tensión a aparatos electrodomésticos como ventiladores, lámparas, estéreos, televisores, radios, batidoras y para elaborar extensiones.


    Cable SJT

    Cable de dos, tres o cuatro conductores de cobre suave en construcción flexible, con aislamiento individual de PVC, e identificados por colores (negro, azul, gris, blanco, verde). Y por ultimo, con una cubierta exterior de PVC. La superficie exterior puede presentarse en forma estriada o lisa.




    Fig. 1.6- Cable cordón SJT, (imagen cortesía de conductores VIAKON)


    Aplicaciones:

    Encuentran su principal aplicación en el suministro de energía eléctrica de baja tensión en computadoras, aspiradoras, mezcladoras, pulidoras, taladros, caladoras y otros productos portátiles y electrodomésticos.


    Cable UF

    Pueden ser sólidos o cableados y están construidos con cobre de temple suave, están además aislados con una capa uniforme de material termoplástico, PVC resistente a la humedad, posteriormente los conductores son dispuestos paralelamente y sobre ellos se aplica una chaqueta también de PVC generalmente de color gris.



    Fig. 1.9-Cable UF, (imagen cortesía de conductores Paige Electric)


    Aplicaciones:

    Son utilizados para circuitos de fuerza y alumbrado en edificaciones industriales, comerciales y residenciales, son útiles además para ser enterrados directamente, en instalaciones cubiertas y expuestas, se usan en viviendas del lado interior o exterior de las paredes.




    Fig. 10- Instalación de cable UF


    CABLEADO DE UNA RED


    PRINCIPALES TIPOS DE CABLES


    La gran mayoría de la redes están conectadas por algún tipo de cableado, que actúa como medio de transmisión por donde pasan las señales entre los equipos. Hay disponibles una gran cantidad de tipos de cables para cubrir las necesidades y tamaños de las diferentes redes, desde las más pequeñas a las más grandes.

    Existen una gran cantidad de tipos de cables. Algunos fabricantes publican un catalogo con más de 2000 tipos diferentes que se pueden agrupar en 3 grupos:

    CABLE COAXIAL


    Un cable coaxial consta de un núcleo de hilo de cobre rodeado por un aislante, un apantallamiento de metal trenzado y una cubierta externa. El termino apantallamiento hace referencia al trenzado o malla de metal que rodea algunos tipos de cable. El apantallamiento protege los datos transmitidos absorbiendo las señales electrónicas espurreas, llamadas ruido, de forma que no pasan por el cable y no distorsionan los datos. Al cable que contiene una lamina aislante y una capa de apantallamiento de metal trenzado se le denomina cable apantallado doble. Para entornos que están sometidos a grandes interferencias, se encuentra disponible un apantallamiento cuádruple. Este apantallamiento consta de dos láminas aislantes y 2 capas de apantallamiento de metal trenzado.

    TIPOS DE CABLES COAXIAL


    Hay dos tipos de cable coaxial:



    CABLE FINO (THINNET)




    CABLE GRUESO (THICKNET)




    CABLE THINNET: es un cable coaxial flexible de unos 0,64 cm de grueso. Se puede utilizar para la mayoría de los tipos de redes, es un cable flexible y fácil de manejar. Puede soportar una señal de una distancia aproximada de 185 m, antes que la señal comience a sufrir atenuación. Esta incluido en un grupo que se denomina LA FAMILIA RG-58 y tiene una impedancia de 50 ohm.

    CABLE THICKNET: es un coaxial rígido de 1,27 cm a veces se le denomina ETHERNET estándar debido que fue el primer tipo de cable con la red Ethernet. Cuando mayor sea el grosor del núcleo de cobre, más lejos puede transportar las señales. Puede llevar una señal de 500 metros. Se utiliza como enlace central o backbone para conectar redes pequeñas basadas en thinnet.

    Un TRANSCEIVER diseñado para Ethernet, thicknet incluye un conector conocido como VAMPIRO o FORADOR para establecer la conexión con el núcleo thicknet.


    HAY DOS TIPOS DE CABLES DE PAR TRENZADO


    - CABLE DE PAR TRENZADO SIN APANTALLAR (UTP)




    - CABLE DE PAR TRENZADO APANTALLADO (STP)




    A menudo se agrupan una serie de hilos de par trenzado y se encierran en un revestimiento protector para formar un cable. El trenzado elimina el ruido eléctrico de los pares adyacentes y de otras fuentes como motores, redes y transformadores.

    CABLE DE PAR TRENZADO SIN APANTALLAR (UTP)
    Con la especificación 10baset, es el tipo mas conocido de cable par trenzado y ha sido el cableado LAN mas utilizado. El segmento máximo de longitud de cable es de 100 metros. Consta de 2 hilos de cobre aislados las especificaciones dictan el numero de entrelazados permitidos por pie de cable; el numero de entrelazados depende del objetivo con el que se instale el cable.

    CABLE DE PAR TRENZADO APANTALLADO (STP)
    Utiliza una envoltura con cobre trenzado, más protectora de mayor calidad que la usada en el cable utp. Stp también utiliza una lámina rodeando cada uno de los pares de hilos, ofrece un excelente apantallamiento en los stp para proteger los datos transmitidos de intermodulaciones exteriores, lo permite soportar mayores tasas de transmisión que los utp a distancias mayores.


    CABLE DE FIBRA OPTICA








    Este las señales que se transportan son señales digitales de datos en forma de pulsos modulados de luz. Es apropiado para transmitir datos a velocidades muy altas y con grandes capacidades. Consta de un cilindro de vidrio externamente delgado, denominadonúcleo, recubierto por una capa de vidrio concéntrica llamada revestimiento a veces son de plástico.


    Transmisión inalámbrica: son ondas de radio son fáciles de generar, pueden viajar distancias largas y penetrar edificio sin problemas, son omnidireccionales viajan en todas las direcciones desde la fuente, por lo cual el transmisor y receptor no tienen que alinearse.
    Trasmisión por microondas: por encima de los 100 mhz las ondas viajan en línea recta se pueden enfocar en un hoz estrecho. Concentrar toda la energía en hoz pequeño con una antena parabólica produce una señal mucho mas alta en relación con el ruido, pero las antenas trasmisora y receptora se deben alinear entre si.


    Ondas infrarrojas: no atraviesan los sólidos es una ventaja por lo que un sistema infrarrojo no interfiera un sistema similar en un lado adyacente. Este sistema no necesita de licencia del gobierno para operar en contraste con los sistemas de radio.
    Transmisión por ondas de luz: ofrece un ancho de banda muy alto y un costo muy bajo. Fácil de instalar y no requiere de licencia. La desventaja es que los rayos laser no penetran la lluvia y niebla.


    Redes inalámbricas: facilitan la operación en donde la computadora no puede permanecer en un solo lugar, las redes inalámbricas actuales ofrecen velocidades de 2mbps.



    4.1 Crimpar y uso de Crimpadora


    PASOS PARA PONCHAR UN CABLE UTP

    OBJETIVO

    Demostrar la técnica de ponchado del terminal RJ45 con el cable UTP Cat. 5.

    INTRODUCCIÓN
    Una red de área local (LAN) es una red de "alta" velocidad (decenas de Megabits), generalmente confinada a un mismo piso o edificio.
    Los medios de transmisión que utiliza puede ser UTP, Coaxial o fibra óptica principalmente, esto hace posible obtener altas velocidades y baja tasa de errores.
    Su utilización en redes empresariales se remonta a 15 a 20 años, lo que implica que hoy en día se considere una tecnología madura aunque están apareciendo nuevas tecnologías de redes LANs como ATM y Gigabit.
    Su origen se debió a la necesidad que existía de asignar dinámicamente el ancho de banda entre un número variable de usuarios y aplicaciones, dado que los esquemas de asignación estáticos como TDM y FDM no son adecuados para este tipo de aplicaciones.
    Las primeras experiencias con asignación dinámica de ancho de banda fueron desarrollados con ALOHA, de donde se tomaron las bases para la más ampliamente difundida red de área local conocida como Ethernet o IEEE 802.3. Igualmente existen otros esquemas de redes de área local como alternativas a Ethernet que se han utilizado en ambientes industriales y empresarial.
    Introducción a las redes de datos
    Una red de datos es un sistema que enlaza dos o más puntos (terminales) por un medio físico, el cual sirve para enviar o recibir un determinado flujo de información. 

    MATERIALES 


    CABLE DIRECTO

    NORMA T568A – T568A : 



    Se pela un extremo del cable con la pelacables de 2 a 3 cm, luego se separan los cables de manera que se pueda distinguir el color de cada cable, luego se acomodan en forma horizontal de izquierda a derecha dependiendo de la norma T568B y se corta con el cortafríos de manera que queden horizontalmente nivelados y se incrustan de esa misma manera en el conector RJ45 y se pasa al ponchado que se hace con la ponchadora y se aprieta duro para un optimo ponchado, por último se prueba si el cable quedo bien ponchado con la certificadora (Tester Cable) y lo mismo con el otro extremo. 

    CABLE CRUZADO 

    NORMA T568A – T568B): 


    Se pela un extremo del cable con la pelacables de 2 a 3 cm, luego se separan los cables de manera que se pueda distinguir el color de cada cable, luego se acomodan en forma horizontal de izquierda a derecha dependiendo de la norma T568A y se corta con el cortafríos de manera que queden horizontalmente nivelados y se incrustan de esa misma manera en el conector RJ45 y se pasa al ponchado que se hace con la ponchadora y se aprieta duro para un optimo ponchado, por último se prueba si el cable quedo bien ponchado con la certificadora (Tester Cable) y lo mismo con el otro extremo del cable pero teniendo en cuenta la Norma T568B.






    NTFS

    NTFS (del inglés New Technology File System) es un sistema de archivos de Windows NT incluido en las versiones deWindows 2000, Windows XP, Windows Server 2003, Windows Server 2008, Windows Vista, Windows 7, Windows 8 yWindows 10. Está basado en el sistema de archivos HPFS de IBM/Microsoft usado en el sistema operativo OS/2, y también tiene ciertas influencias del formato de archivos HFS diseñado por Apple.

    Funcionamiento



    Todo lo que tiene que ver con los ficheros se almacena en forma de metadatos. Esto permitió una fácil ampliación de características durante el desarrollo de Windows NT. Un ejemplo lo hallamos en la inclusión de campos de indizado añadidos para posibilitar el funcionamiento de Active Directory.

    Los nombres de archivo son almacenados en Unicode (UTF-16), y la estructura de ficheros en árboles-B, una estructura de datos compleja que acelera el acceso a los ficheros y reduce la fragmentación, que era lo más criticado del sistema FAT.

    Se emplea un registro transaccional (journal) para garantizar la integridad del sistema de ficheros (pero no la de cada archivo). Los sistemas que emplean NTFS han demostrado tener una estabilidad mejorada, que resultaba un requisito ineludible considerando la naturaleza inestable de las versiones más antiguas de Windows NT.

    Sin embargo, a pesar de lo descrito anteriormente, este sistema de archivos posee un funcionamiento prácticamente secreto, ya que Microsoft no ha liberado su código, como hizo con FAT.

    Gracias a la ingeniería inversa, aplicada sobre el sistema de archivos, se desarrollaron controladores como el NTFS-3G que actualmente proveen a sistemas operativos GNU/Linux, Solaris, MacOS X o BSD, entre otros, de soporte completo de lectura y escritura en particiones NTFS.

    DHCP

    DHCP (siglas en inglés de Dynamic Host Configuration Protocol, en español «protocolo de configuración dinámica de host») es un protocolo de red que permite a los clientes de una red IP obtener sus parámetros de configuración automáticamente. Se trata de un protocolo de tipo cliente/servidor en el que generalmente un servidor posee una lista de direcciones IP dinámicas y las va asignando a los clientes conforme éstas van quedando libres, sabiendo en todo momento quién ha estado en posesión de esa IP, cuánto tiempo la ha tenido y a quién se la ha asignado después.

    Asignaciones de direcciones IP



    Cada dirección IP debe configurarse manualmente en cada dispositivo y, si el dispositivo se mueve a otra subred, se debe configurar otra dirección IP diferente. El DHCP le permite al administrador supervisar y distribuir de forma centralizada las direcciones IP necesarias y, automáticamente, asignar y enviar una nueva IP si fuera el caso en que el dispositivo es conectado en un lugar diferente de la red.

    El protocolo DHCP incluye tres métodos de asignación de direcciones IP:
    • Asignación manual o estática: Asigna una dirección IP a una máquina determinada. Se suele utilizar cuando se quiere controlar la asignación de dirección IP a cada cliente, y evitar, también, que se conecten clientes no identificados.
    • Asignación automática: Asigna una dirección IP a una máquina cliente la primera vez que hace la solicitud al servidor DHCP y hasta que el cliente la libera. Se suele utilizar cuando el número de clientes no varía demasiado.
    • Asignación dinámica: el único método que permite la reutilización dinámica de las direcciones IP. El administrador de la red determina un rango de direcciones IP y cada dispositivo conectado a la red está configurado para solicitar su dirección IP al servidor cuando la tarjeta de interfaz de red se inicializa. El procedimiento usa un concepto muy simple en un intervalo de tiempo controlable. Esto facilita la instalación de nuevas máquinas clientes.

    DNS



    Domain Name System o DNS (en español «Sistema de Nombres de Dominio») es un sistema de nomenclatura jerárquica para computadoras, servicios o cualquier recurso conectado a Internet o a una red privada. Este sistema asocia información variada con nombres de dominios asignado a cada uno de los participantes. Su función más importante es traducir (resolver) nombres inteligibles para las personas en identificadores binarios asociados con los equipos conectados a la red, esto con el propósito de poder localizar y direccionar estos equipos mundialmente.

    El servidor DNS utiliza una base de datos distribuida y jerárquica que almacena información asociada a nombres de dominio en redes como Internet. Aunque como base de datos el DNS es capaz de asociar diferentes tipos de información a cada nombre, los usos más comunes son la asignación de nombres de dominio a direcciones IP y la localización de los servidores de correo electrónico de cada dominio.

    La asignación de nombres a direcciones IP es ciertamente la función más conocida de los protocolos DNS. Por ejemplo, si la dirección IP del sitio Google es 216.58.210.163, la mayoría de la gente llega a este equipo especificando www.google.es y no la dirección IP. Además de ser más fácil de recordar, el nombre es más fiable.Consulta desde cmd. Consultado el 26 de noviembre de 2015. La dirección numérica podría cambiar por muchas razones, sin que tenga que cambiar el nombre.


    Dominio


    Un dominio puede referirse a dos cosas:
    • Es un conjunto de computadores conectados en una red que confían a uno de los equipos de dicha red, la administración de los usuarios y los privilegios que cada uno de los usuarios tiene en dicha red.
    • Es la parte principal de una dirección en la web que indica la organización o compañía que administra dicha página

    Controlador de dominio


    El controlador de dominio, en sistemas operativos Windows, es un solo equipo si la red es pequeña. Cuando la red es grande (más de 30 equipos con sus respectivos periféricos y más de 30 usuarios) suele ser necesario un segundo equipo dependiente del primero al que llamaremos subcontrolador de dominio. Usaremos este equipo para descargar en él parte de las tareas del controlador de dominio (a esto se le llama balance de carga). Cuando las redes son muy grandes es mejor dividirlas en subdominios, con controladores diferentes.

    Los controladores y subcontroladores de dominio «sirven» a los usuarios y a las computadoras de la red para otras tareas como resolver las direcciones DNS, almacenar las carpetas de los usuarios, hacer copias de seguridad, almacenar software de uso común, etc. Por ello a estos equipos se les llama también servidores.

    .edu .com .NET .org .gob

    3.1 Arquitectura de protocolos


    3.1.1 TCP/IP. 


    TCP se diseñó para un entorno que resultaba poco usual para los años 70 pero que ahora es habitual.

    Capa Física: La capa física trata con el medio físico, los conectores, el control de señales eléctricas representadas en unos (1) y ceros (0) binarios. Por ejemplo, las tarjetas de Red y los Cables son componentes del medio físico.

    Capa de Enlace de Datos. Se lleva a cabo la organización de unidades de datos llamadas tramas, el filtrado de errores la comprobación de direcciones de hardware (MAC) y operaciones de control de errores.

    Capa de Red: IP IP realiza funciones en la capa de Red, IP encamina datos entre sistemas. Los datos pueden atravesar un enlace único o enviarse por múltiples enlaces a través de Routers, los datos se transportan en unidades de bits llamados datagramas. Un datagrama contiene una cabecera de IP que contiene información de direcciones de la capa 3 (Transporte), los encaminadores examinan la dirección de destino de la cabecera IP, para dirigir los datagramas al destino.

    La capa de IP se denomina no orientada a conexión ya que cada datagrama se encamina de manera independiente e IP no garantiza la entrega fiable, ni secuencia de los mismos. IP sólo encamina su tráfico sin tener en cuenta la relación entre las aplicaciones a las que pertenece un determinado datagrama.

    Capa de Transporte: TCP El Protocolo de Control de Transmisión realiza labores en la capa de transporte, debido a que proporciona a las aplicaciones servicios de conexión fiable de datos, por lo tanto, es un protocolo orientado a conexión. TCP dispone de los mecanismos que garantizan que los datos se entregan sin errores, sin omisiones y en secuencia. Una aplicación, como la de transferencia de archivos, transmite datos a TCP. TCP le añade una cabecera creando una unidad denominada segmento. TCP envía los segmentos pasándoselos a su nivel inferior Capa 3 (IP) quien los encamina a su destino. Del otro lado TCP acepta los segmentos entrantes de IP, determina la aplicación de destino y traslada los datos a la aplicación en el orden en que fueron enviados. Capa de Transporte: UDP Una aplicación envía un mensaje independiente a otra aplicación mediante el Protocolo de Datagramas de Usuario (UDP). UDP añade una cabecera creando una unidad denominada datagrama de UDP o mensaje de UDP. UDP traslada los mensajes de UDP salientes a IP. UDP acepta mensajes de UDP entrantes de IP y determina la aplicación de destino. UDP es un servicio de comunicaciones no orientado a conexión que suele usarse


    3.1.2 IPX/SPX


     IPX/SPX, cuyas siglas provienen de Internetwork Packet Exchange/Sequenced Packet Exchange (Intercambio de paquetes interred/Intercambio de paquetes secuenciales), es un protocolo de red utilizado por los sistemas operativos Novell Netware. Como UDP/IP, IPX es un protocolo de datagramas usado para comunicaciones no orientadas a conexión. IPX y SPX derivan de los protocolos IDP y SPP de los servicios de red de Xerox.

    SPX es un protocolo de la capa de transporte (nivel 4 del modelo OSI) utilizado en redes Novell Netware. La capa SPX se sitúa encima de la capa IPX (nivel 3) y proporciona servicios orientados a conexión entre dos nodos de la red. SPX se utiliza principalmente para aplicaciones cliente/servidor.


    Mientras que el protocolo IPX es similar a IP, SPX es similar a TCP. Juntos, por lo tanto, proporcionan servicios de conexión similares a TCP/IP. IPX se sitúa en el nivel de red del modelo OSI y es parte de la pila de protocolos IPX/SPX. IPX/SPX fue diseñado principalmente para redes de área local (LANs), y es un protocolo muy eficiente para este propósito (típicamente su rendimiento supera al de TCP/IP en una LAN). TCP/IP, sin embargo, se ha convertido en el protocolo estándar de facto en parte por su superior rendimiento sobre redes de área extensa (WANs) e Internet (Internet utiliza TCP/IP exclusivamente), y en parte porque es un protocolo más maduro y se diseñó específicamente con este propósito en mente.

    El uso de IPX está disminuyendo desde que el boom de Internet hizo a TCP/IP casi universal. Los ordenadores y las redes pueden usar múltiples protocolos de red, así que casi todos los sitios con IPX estarán usando también TCP/IP para permitir la conectividad con Internet. Ahora también es posible utilizar productos de Novell sin IPX, ya que desde hace algunas versiones soportan ambos, tanto IPX como TCP/IP.


    3.1.3 Protocolos Emergentes 

    La gente instala una red en su casa para compartir una conexión de banda ancha en varias computadoras, así como para compartir archivos y periféricos. Ahora, con la accesibilidad conveniente de las fotografías digitales almacenadas, MP3 y vídeos por televisiones, estéreos y otros medios de entretenimiento, esta red para el hogar se está expandiendo en multimedia y entretenimiento. Linksys ofrece todo lo necesario para estas redes emergentes de última generación, desde adaptadores y direccionadores básicos hasta adaptadores para juegos, ampliadores del centro de medios, sistemas de música y dispositivos para almacenamiento.

    2.6 Sistemas Operativos de red NOS


    Es un componente software de una computadora que tiene como objetivo coordinar y manejar las actividades de los recursos del ordenador en una red de equipos. Consiste en un software que posibilita la comunicación de un sistema informático con otros equipos en el ámbito de una red.


    Dependiendo del fabricante del sistema operativo de red, tenemos que el software de red para un equipo personal se puede añadir al propio sistema operativo del equipo o integrarse con él. Netwarede Novell es el ejemplo más familiar y famoso de sistema operativo de red donde el software de red del equipo cliente se incorpora en el sistema operativo del equipo. El equipo personal necesita ambos sistema operativos para gestionar conjuntamente las funciones de red y las funciones individuales.

    2.5 Servidores

    2.5.1 Servidores de archivo e impresión



    Un servidor de Archivos es un equipo con un software especial que permite centralizar y compartir archivos dentro de su red, en donde cualquier computador conectado a su red y con los permisos apropiados puede ver o modificar los archivos.
    Toda red con gran flujo de documentos necesita de un servidor centralizado de archivos. Esto elimina el problema de las copias redundantes, que ocupan espacio innecesario en los discos de las estaciones de trabajo y dificultan el control de las versiones y actualizaciones. Además, puede definirse un esquema de seguridad apropiado (archivos personales y grupales, pertenencia de los usuarios a distintos grupos, etc.), que no solo elevan el grado de seguridad, sino que reducen el impacto de la comisión de errores involuntarios.
    En el caso de las impresoras, conectarlas a un servidor central elimina el problema de la disponibilidad de la estación a la que estuviera conectada, permitiendo un mayor control sobre las tareas de impresión. Las posibilidades de control de acceso a la red, junto con las capacidades de automatización del inicio de sesión, permiten un mayor nivel de seguridad y un entorno de trabajo homogéneo para los usuarios, cualquiera sea la estación de trabajo que utilicen.


    2.5.2 Administradores de Cuentas de Usuario

    La administración de cuentas de usuario y grupos es una parte esencial de la administración de sistemas dentro de una organización. Pero para hacer esto efectivamente, un buen administrador de sistemas primero debe entender lo que son las cuentas de usuario y los grupos y como funcionan.



    La razón principal para las cuentas de usuario es verificar la identidad de cada individuo utilizando un computador. Una razón secundaria (pero aún importante) es la de permitir la utilización personalizada de recursos y privilegios de acceso.
    Los recursos incluyen archivos, directorios y dispositivos. El control de acceso a estos dispositivos forma una gran parte de la rutina diaria de un administrador de sistemas; a menudo el acceso a un recurso es controlado por grupos. Los grupos son construcciones lógicas que se pueden utilizar para enlazar a usuarios para un propósito común. Por ejemplo, si una organización tiene varios administradores de sistemas, todos ellos se pueden colocar en un grupo administrador de sistema. Luego se le pueden dar permisos al grupo para acceder a recursos claves del sistema. De esta forma, los grupos pueden ser una herramienta poderosa para la administración de recursos y acceso.


    2.5.3 Servidores de Aplicación

    En informática, se denomina servidor de aplicaciones a un servidor en una red de computadores que ejecuta ciertas aplicaciones.



    Usualmente se trata de un dispositivo de software que proporciona servicios de aplicación a las computadoras cliente. Un servidor de aplicaciones generalmente gestiona la mayor parte (o la totalidad) de las funciones de lógica de negocio y de acceso a los datos de la aplicación. Los principales beneficios de la aplicación de la tecnología de servidores de aplicación son la centralización y la disminución de la complejidad en el desarrollo de aplicaciones.


    2.5.4 Servidores de Internet

    Programa que comunica el protocolo HTTP, está diseñado para transferir lo que llamamos hipertextos, páginas web o páginas HTML (hypertext markup language): textos complejos con enlaces, figuras, formularios, botones y objetos incrustados como animaciones o reproductores de música.

    En pocas palabras se encarga de enviar sitios basados en html, hablando de php y asp … la diferencia es que php y asp se procesan como aplicacion “se compila o interpreta en caso de php” y posteriormente se envian las etiquetas html y otros objetos incrusatdos en el html.

    2.4 Dispositivos de conectividad


    2.4.1 Repetidores

    Es un dispositivo electrónico que recibe una señal débil o de bajo nivel y la retransmite a una potencia o nivel más alto, de tal modo que se puedan cubrir largas distancias sin degradación o con una degradación tolerable.


    Proceso de las señales mediante un repetidor: Cuando las señales viajan a través de un cable, se degradan y se distorsionan en un proceso denominado «atenuación». Si un cable es bastante largo, la atenuación provocará finalmente que una señal sea prácticamente irreconocible. La instalación de un repetidor permite a las señales viajar sobre distancias más largas. Éste funciona en el nivel físico del modelo OSI para regenerar las señales de la red y reenviarla a otros segmentos. El repetidor toma una señal débil de un segmento, la regenera y la pasa al siguiente segmento. Para pasar los datos de un segmento a otro a través del repetidor, deben ser idénticos en cada segmento los paquetes y los protocolos Control lógico de enlace.

    Se pueden clasificar en dos tipos:
    • Locales: cuando enlazan redes próximas (LAN’s).
    • Remotos: cuando las redes están alejadas y se necesita un medio intermedio de comunicación. 


    2.4.2 Concentradores

    Un concentrador o hub es un dispositivo que permite centralizar el cableado de una red y poder ampliarla.



    CARACTERÍSTICAS

    Los concentradores no logran dirigir el tráfico que llega a través de ellos, y cualquier paquete de entrada es transmitido a otro puerto, aparecen las colisiones de paquetes como resultado, que impiden en gran medida la fluidez del tráfico. Cuando dos dispositivos intentan comunicar simultáneamente, ocurrirá una colisión entre los paquetes transmitidos, que los dispositivos transmisores detectan. Al detectar esta colisión, los dispositivos dejan de transmitir y hacen una pausa antes de volver a enviar los paquetes.


    USOS

    -La conexión del analizador de protocolos con un concentrador permite ver todo el tráfico en el segmento.


    2.4.3 Tranceptores

    Un transceptor es un dispositivo que combina la capacidad de transmisión y recepción en circuitos compartida. Hay un número de diferentes tipos de transceptores diseñados para una amplia variedad de usos, y el transceptor es la piedra angular de la comunicación inalámbrica. Un ejemplo común de un transceptor es un teléfono celular, que es capaz de enviar y recibir datos, a diferencia de una básica de la radio, que sólo puede recibir señales. 




    Como algunos elementos del circuito se emplean tanto para el envío como para la recepción, un transceptor sólo puede ser semiduplex; esto significa que puede enviar señales en ambos sentidos, pero no de forma simutánea.
    Transceptores pueden dividirse en dos categorías bruto: completo y dúplex medio. En un transceptor full duplex, el dispositivo puede transmitir y recibir al mismo tiempo. Los teléfonos celulares son, una vez más, un excelente ejemplo de un transceptor full duplex, como ambas partes pueden hablar a la vez. Por el contrario, un transceptor de dúplex medio silencia una de las partes, mientras que el otro transmite. Muchos de los sistemas de radio operan en un método de dúplex medio, razón por la cual personas cuando van “out”, alerta al otro usuario al hecho de que la frecuencia está abierta para la transmisión de la señal.
    El bono de portabilidad es que el transceptor es fácil de manejar y mover según sea necesario, pero la desventaja es que el dispositivo puede ser débil, con un rango limitado que a veces puede ser problemático.


    2.4.4 Puentes


    Un puente o bridge es un dispositivo de interconexión de redes de ordenadores que opera en la capa 2 (nivel de enlace de datos) del modelo OSI. Este interconecta dos segmentos de red (o divide una red en segmentos) haciendo el pasaje de datos de una red hacia otra, con base en la dirección física de destino de cada paquete.





    Un bridge conecta dos segmentos de red como una sola red usando el mismo protocolo de establecimiento de red.
    Funciona a través de una tabla de direcciones MAC detectadas en cada segmento a que está conectado. Cuando detecta que un nodo de uno de los segmentos está intentando transmitir datos a un nodo del otro, el bridge copia la trama para la otra subred. Por utilizar este mecanismo de aprendizaje automático, los bridges no necesitan configuración manual.
    La principal diferencia entre un bridge y un hub es que el segundo pasa cualquier trama con cualquier destino para todos los otros nodos conectados, en cambio el primero sólo pasa las tramas pertenecientes a cada segmento. Esta característica mejora el rendimiento de las redes al disminuir el tráfico inútil.


    2.4.5 Conmutadores

    Un conmutador o switch es un dispositivo digital de lógica de interconexión de redes de computadores que opera en la capa 2 del modelo OSI. Su función es interconectar dos o más segmentos de red, pasando datos de un segmento a otro de acuerdo con la dirección MAC de destino de las tramas en la red.


    Los conmutadores se utilizan cuando se desea conectar múltiples redes, fusionándolas en una sola.
    • funcionan como un filtro en la red
    • mejoran el rendimiento y la seguridad de las LANs
    Los puentes (bridges) y conmutadores (switches) pueden conectarse unos a los otros pero siempre hay que hacerlo de forma que exista un único camino entre dos puntos de la red . En caso de no seguir esta regla, se forma un bucle o loop en la red, que produce la transmisión infinita de tramas de un segmento al otro.
    Los conmutadores poseen la capacidad de aprender y almacenar las direcciones de red de nivel 2 (direcciones MAC) de los dispositivos alcanzables a través de cada uno de sus puertos.
    Uno de los puntos críticos de los switch son los bucles que consisten en habilitar dos caminos diferentes para llegar de un equipo a otro a través de un conjunto de conmutadores.

    2.4.6 Gateways

    Un gateway es un equipo que permite interconectar redes con protocolos y arquitecturas completamente diferentes a todos los niveles de comunicación. La traducción de las unidades de información reduce mucho la velocidad de transmisión a través de estos equipos. 




    Operan en los niveles más altos del modelo de referencia OSI y realizan conversión de protocolos para la interconexión de redes con protocolos de alto nivel diferentes.
    Los gateways incluyen los 7 niveles del modelo de referencia OSI, y aunque son más caros que un bridge o un router, se pueden utilizar como dispositivos universales en una red corporativa compuesta por un gran número de redes de diferentes tipos.
    Los gateways tienen mayores capacidades que los routers y los bridges porque no sólo conectan redes de diferentes tipos, sino que también aseguran que los datos de una red que transportan son compatibles con los de la otra red.

    2.4.7 Routers


    El Router permite el uso de varias clases de direcciones IP dentro de una misma red. De este modo permite la creación de sub redes.

    Es utilizado en instalaciones más grandes, donde es necesaria (especialmente por razones de seguridad y simplicidad) la creación de varias sub redes. Cuando la Internet llega por medio de un cable RJ45, es necesario utilizar un router para conectar una sub red (red local, LAN) a Internet, ya que estas dos conexiones utilizan diferentes clases de dirección IP (sin embargo es posible pero no muy aconsejado utilizar una clase A o B para una red local, estas corresponden a las clases de Internet).

    El router equivale a un PC gestionando varias conexiones de red (los antiguos routers eran PCs)
    Los routers son compatibles con NAT, lo que permite utilizarlos para redes más o menos extensas disponiendo de gran cantidad de máquinas y poder crear “correctamente” sub redes. También tienen la función de cortafuegos (firewall) para proteger la instalación.

    2.3 Medios de transmision

    2.2 Medios de transmisión

    Cable CoaxialConsiste en un cable conductor interno (cilíndrico) separado de otro cable conductor externo por anillos aislantes o por un aislante macizo. Todo esto se recubre por otra capa aislante que es la funda del cable.


    Consta de un núcleo de hilo de cobre (es el que transporta señales electrónicas que forman los datos ) rodeado por un aislante, un apantallamiento de metal trenzado y una cubierta externa.
    La malla de hilos protectora absorbe las señales electrónicas perdidas, de forma que no afecten a los datos que se envían a través del cable de cobre interno
    El aislante sirve para evitar que estén en contacto la malla de hilos y el núcleo.
    Se utiliza para transmitir señales analógicas o digitales. Sus inconvenientes principales son: atenuación, ruido térmico, ruido de intermodulación.

    CARACTERISTICAS

    Es más caro y resistente a interferencias que el par trenzado. Se puede utilizar a más larga distancia. Velocidades de transmisión superiores. Menos interferencias. Permite conectar más estaciones. Se suele utilizar para: televisión, telefonía a larga distancia, redes de área local, conexión de periféricos a corta distancia, etc.

    CATEGORIAS

    Para transmisión en banda ancha.
    Con una impedancia característica de 75 ohmios. Utilizado en transmisión de señales de televisión por cable (CATV, "Cable Televisión").

    Para transmisión en banda base.Con una impedancia característica de 50 ohmios. Utilizado en LAN´s. Dentro de esta categoría, se emplean dos tipos de cable: coaxial grueso ("thick") y coaxial fino ("thin").

    TIPOS

    • Cable Thick o cable grueso: es más voluminoso, caro y difícil de instalar, pero permite conectar un mayor número de nodos y alcanzar mayores distancias.
    • Cable Thin o cable fino, también conocido como cheapernet por ser más económico y fácil de instalar. Sólo se utiliza para redes con un número reducido de nodos.

    Par trenzado

    El par trenzado: Consiste en un par de hilos de cobre conductores cruzados entre sí, con el objetivo de reducir el ruido de diafonía. A mayor número de cruces por unidad de longitud, mejor comportamiento ante el problema de diafonía.

    Existen dos tipos de par trenzado:
    Protegido: Shielded Twisted Pair (STP)
    No protegido: Unshielded Twisted Pair (UTP)

    UTP

    El UTP son las siglas de UnshieldedTwistedPair. Es un cable de pares trenzado y sin recubrimiento metálico externo, de modo que es sensible a las interferencias. Es importante guardar la numeración de los pares, ya que de lo contrario el Efecto del trenzado no será eficaz disminuyendo sensiblemente o incluso impidiendo la capacidad de transmisión. Es un cable Barato, flexible y sencillo de instalar. Las aplicaciones principales en las que se hace uso de cables de par trenzado son:
    • Bucle de abonado
    • Redes LAN

    STP

    Acrónimo de ShieldedTwistedPair o Par trenzado apantallado. Se trata de cables de cobre aislados dentro de una cubierta protectora, con un número específico de trenzas por pie. STP se refiere a la cantidad de aislamiento alrededor de un conjunto de cables y, por lo tanto, a su inmunidad al ruido. Se utiliza en redes de ordenadores como Ethernet o Token Ring. Es más caro que la versión no apantallada o UTP.

    Ventajas y Desventajas

    Ventajas:

    •  Bajo costo en su contratación.
    •  Alto número de estaciones de trabajo por segmento.
    •  Facilidad para el rendimiento y la solución de problemas.
    •  Puede estar previamente cableado en un lugar o en cualquier parte.

    Desventajas:

    •  Altas tasas de error a altas velocidades.
    •  Ancho de banda limitado.
    •  Baja inmunidad al ruido.
    •  Baja inmunidad al efecto crosstalk (diafonía)
    •  Alto coste de los equipos.
    •  Distancia limitada (100 metros por segmento).

    Fibra Óptica

    La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total. La fuente de luz puede ser láser o un LED.

    Permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio o cable. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagnéticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.

    Características

    • Cobertura más resistente
    • Uso dual (interior y exterior)
    • Mayor protección en lugares húmedos
    • Empaquetado de alta densidad

    Ventajas

    • La fibra óptica hace posible navegar por Internet a una velocidad de dos millones de bps.
    • Acceso ilimitado y continuo las 24 horas del día, sin congestiones. 
    • Video y sonido en tiempo real.
    • Fácil de instalar.
    • Es inmune al ruido y las interferencias, como ocurre cuando un alambre telefónico pierde parte de su señal a otra.
    • Las fibras no pierden luz, por lo que la transmisión es también segura y no puede ser perturbada.
    • La materia prima para fabricarla es abundante en la naturaleza.
    • Compatibilidad con la tecnología digital.

    Desventajas

    • El costo de instalación es elevado.
    • Fragilidad de las fibras. 
    • Disponibilidad limitada de conectores.
    • Dificultad de reparar un cable de fibras roto en el campo.

    Tipos

    • Fibra multimodo.- Una fibra multimodo es aquella en la que los haces de luz pueden circular por más de un modo o camino. Esto supone que no llegan todos a la vez. Una fibra multimodo puede tener más de mil modos de propagación de luz. Las fibras multimodo se usan comúnmente en aplicaciones de corta distancia, menores a 1 km; es simple de diseñar y económico.
    • Fibra monomodo.- Una fibra monomodo es una fibra óptica en la que sólo se propaga un modo de luz. Se logra reduciendo el diámetro del núcleo de la fibra hasta un tamaño que sólo permite un modo de propagación. Su transmisión es paralela al eje de la fibra. A diferencia de las fibras multimodo, las fibras monomodo permiten alcanzar grandes distancias (hasta 400 km máximo, mediante un láser de alta intensidad) y transmitir elevadas tasas de información (decenas de Gb/s).

    Conectores

    • ST o BFOC
    • FC
    • FDDI,
    • LC y MT-Array
    • SC y SC-Dúplex 

    Bluetooth

    ¿Qué es Bluetooth? Es una tecnología de ondas de radio a corto alcance, 2.4 GHz de frecuencia. En ella se busca la simplificación de las comunicaciones en distintos dispositivos: ordenadores móviles, teléfonos móviles; además sincroniza a los dispositivos.




    Tiene un alcance de 10 metros, también sirve para crear una conexión a Internet inalámbrica desde tu portátil usando tu teléfono móvil. Un caso aún más práctico es el poder sincronizar libretas de direcciones y calendarios en tu PDA, impresoras, cámaras digitales, teléfono móvil, ordenador de sobremesa y portátil automáticamente y al mismo tiempo.

    Características:

    • ž Tecnología: Spread Spectrum
    • ž Potencia de transmisión: 1mW para 10 metros, 100mW para 100 metros
    • ž Canales máximos de voz: 3 por piconet
    • ž Canales máximos de datos: 7 por piconet
    • ž Velocidad de datos: 721 Kbps por Piconet
    • ž Cobertura: 10 Metros
    • ž No. De dispositivos: 8 por piconet y hasta 10 piconet en 10 metros
    • ž Alimentación: 2.7 Voltios
    • ž Consumo de potencia: Desde 30µA a 30µA transmitiendo
    • ž Interferencia: Es mínima, se implementan saltos rápidos en
    • ž frecuencia de 1600 veces / segundo. 

    ¿Qué es un PICONET?

    Es una red de dispositivos informáticos que se conectan utilizando Bluetooth. Puede constar de dos a ocho dispositivos. Habrá siempre un maestro y los demás serán esclavos. El periférico como maestro: escoge el hop adecuado para mantener el enlace. Establece conexiones en las que un paquete de datos ocupa un slot para la emisión y otro para la recepción. La secuencia única de salto de frecuencia del canal está determinado por la identidad del maestro de la piconet (un código único para cada equipo), y por su frecuencia de reloj. Para que una unidad esclava pueda sincronizarse con una unidad maestra, ésta debe añadir un ajuste a su propio reloj nativo y así poder compartir la misma portadora de salto. A un grupo de piconets se le llama scatternet.

    Infrarrojo

    Definición
    Las redes por infrarrojos permiten la comunicación entre dos nodos, usando una serie de leds infrarrojos para ello. Se trata de emisores/receptores de las ondas infrarrojas entre ambos dispositivos, cada dispositivo necesita "ver" al otro para realizar la comunicación por ello es escasa su utilización a gran escala.


    Esa es su principal desventaja, a diferencia de otros medios de transmisión inalámbricos (Bluetooth, Wireless, etc.).

    Usos
    Se utiliza principalmente para realizar intercambio de datos entre dispositivos móviles, como PDA's o móviles, ya que el rango de velocidad y el tamaño de los datos a enviar/recibir es pequeño. Adicionalmente, se puede usar para jugar juegos de dos jugadores.
    Existen 3 Tipos
    • Punto a punto
    • Cuasi difuso A
    • Difuso

    Modo punto a punto

    Los patrones de radiación del emisor y del receptor deben de estar lo más cerca posible y que su alineación sea correcta. Como resultado, el modo punto-a-punto requiere una línea-de-visión entre las dos estaciones a comunicarse. Este modo, es usado para la implementación de redes Inalámbricas Infrarrojas Token-Ring. El "Ring" físico es construido por el enlace inalámbrico individual punto-a-punto conectado a cada estación.

    Modo Cuasi-difuso

    Son métodos de emisión radial, es decir que cuando una estación emite una señal óptica, ésta puede ser recibida por todas las estaciones al mismo tiempo en la célula. En el modo cuasi–difuso las estaciones se comunican entre si, por medio de superficies reflectantes. No es necesaria la línea-de-visión entre dos estaciones, pero sí deben de estarlo con la superficie de reflexión. Además es recomendable que las estaciones estén cerca de la superficie de reflexión, ésta puede ser pasiva ó activa. En las células basadas en reflexión pasiva, el reflector debe de tener altas propiedades reflectivas y dispersivas, mientras que en las basadas en reflexión activa se requiere de un dispositivo de salida reflexivo, conocido como satélite, que amplifica la señal óptica. La reflexión pasiva requiere más energía, por parte de las estaciones, pero es más flexible de usar.

    Modo Difuso

    El poder de salida de la señal óptica de una estación, debe ser suficiente para llenar completamente el total del cuarto, mediante múltiples reflexiones, en paredes y obstáculos del cuarto. Por lo tanto la línea-de-vista no es necesaria y la estación se puede orientar hacia cualquier lado. El modo difuso es el más flexible, en términos de localización y posición de la estación, sin embargo esta flexibilidad esta a costa de excesivas emisiones ópticas. Por otro lado la transmisión punto-a-punto es el que menor poder óptico consume, pero no debe de haber obstáculos entre las dos estaciones. En la topología de Ethernet se puede usar el enlace punto-a-punto, pero el retardo producido por el acceso al punto óptico de cada estación es muy representativo en el rendimiento de la red. Es más recomendable y más fácil de implementar el modo de radiación cuasi-difuso. La tecnología infrarroja esta disponible para soportar el ancho de banda de Ethernet, ambas reflexiones son soportadas (por satélites y reflexiones pasivas).

    Ondas de Radio

    Las ondas de radio son un tipo de radiación electromagnética. Una onda de radio tiene una longitud de onda mayor que la luz visible. Las ondas de radio se usan extensamente en las comunicaciones.



    Las ondas de radio tienen longitudes que van de tan sólo unos cuantos milímetros (décimas de pulgadas), y pueden llegar a ser tan extensas que alcanzan cientos de kilómetros (cientos de millas). En comparación, la luz visible tiene longitudes de onda en el rango de 400 a 700 nanómetros, aproximadamente 5 000 menos que la longitud de onda de las ondas de radio. Las ondas de radio oscilan en frecuencias entre unos cuantos kilohertz (kHz o miles de hertz) y unos cuantos terahertz (THz or 1012 hertz).
    Una onda de radio se origina cuando una partícula cargada (por ejemplo, un electrón) se excita a una frecuencia situada en la zona de radiofrecuencia (RF) del espectro electromagnético. Otros tipos de emisiones que caen fuera de la gama de RF son los rayos gamma, los rayos X, los rayos infrarrojos, los rayos ultravioleta y la luz.
    Cuando la onda de radio actúa sobre un conductor eléctrico (la antena), induce en él un movimiento de la carga eléctrica (corriente eléctrica) que puede ser transformado en señales de audio u otro tipo de señales portadoras de información.
    Aunque se emplea la palabra radio, las transmisiones de televisión, radio, radar y telefonía móvil están incluidas en esta clase de emisiones de radiofrecuencia. Otros usos son audio, vídeo, radionavegación, servicios de emergencia y transmisión de datos por radio digital; tanto en el ámbito civil como militar. También son usadas por los radioaficionados.
    La radiocomunicación es la tecnología que posibilita la transmisión de señales mediante la modulación de ondas electromagnéticas. Estas ondas no requieren un medio físico de transporte, por lo que pueden propagarse tanto a través del aire como del espacio vacío.
    El emisor tiene como función producir una onda portadora, cuyas características son modificadas en función de las señales (audio o video) a transmitir. Propaga la onda portadora así modulada.
    El receptor capta la onda y la demodula para hacer llegar al espectador auditor tan solo la señal transmitida.
    Esta se da por medio de ondas electromagnéticas. La transmisión y la recepción se realizan a través de puertos.
    Una de sus principales ventajas es notable en los costos, ya que se elimina todo el cable Ethernet y conexiones físicas entre nodos, pero también tiene una desventaja considerable ya que para este tipo de red se debe de tener una seguridad mucho más exigente y robusta para evitar a los intrusos.
    Las ondas electromagnéticas no necesitan un medio material para propagarse. Así, estas ondas pueden atravesar el espacio interplanetario e interestelar y llegar a la Tierra desde el Sol y las estrellas. Independientemente de su frecuencia y longitud de onda, todas las ondas electromagnéticas se desplazan en el vacío a una velocidad c = 299.792 km/s. Todas las radiaciones del espectro electromagnético presentan las propiedades típicas del movimiento ondulatorio, como la difracción y la interferencia.